Geographic Information Systems
What is a GIS?
A GIS is a computer system capable of capturing, storing, analyzing, and displaying geographically referenced information; that is, data identified according to location. Practitioners also define a GIS as including the procedures, operating personnel, and spatial data that go into the system.
How does a GIS work?
Relating information from different sources
The power of a GIS comes from the ability to relate different information in a spatial context and to reach a conclusion about this relationship. Most of the information we have about our world contains a location reference, placing that information at some point on the globe. When rainfall information is collected, it is important to know where the rainfall is located. This is done by using a location reference system, such as longitude and latitude, and perhaps elevation. Comparing the rainfall information with other information, such as the location of marshes across the landscape, may show that certain marshes receive little rainfall. This fact may indicate that these marshes are likely to dry up, and this inference can help us make the most appropriate decisions about how humans should interact with the marsh. A GIS, therefore, can reveal important new information that leads to better decisionmaking.
Many computer databases that can be directly entered into a GIS are being produced by Federal, State, tribal, and local governments, private companies, academia, and nonprofit organizations. Different kinds of data in map form can be entered into a GIS (figs. 1a, 1b, 1c, 1d, 1e, 1f, and 2). A GIS can also convert existing digital information, which may not yet be in map form, into forms it can recognize and use. For example, digital satellite images can be analyzed to produce a map of digital information about land use and land cover (figs. 3 and 4). Likewise, census or hydrologic tabular data can be converted to a maplike form and serve as layers of thematic information in a GIS (figs. 5 and 6).
|| ↑ Top ||
Data capture
How can a GIS use the information in a map? If the data to be used are not already in digital form, that is, in a form the computer can recognize, various techniques can capture the information. Maps can be digitized by hand-tracing with a computer mouse on the screen or on a digitizing tablet to collect the coordinates of features. Electronic scanners can also convert maps to digits (fig. 7). Coordinates from Global Positioning System (GPS) receivers can also be uploaded into a GIS (fig. 8).
A GIS can be used to emphasize the spatial relationships among the objects being mapped. While a computer-aided mapping system may represent a road simply as a line, a GIS may also recognize that road as the boundary between wetland and urban development between two census statistical areas.
Data capture—putting the information into the system—involves identifying the objects on the map, their absolute location on the Earth's surface, and their spatial relationships. Software tools that automatically extract features from satellite images or aerial photographs are gradually replacing what has traditionally been a time-consuming capture process. Objects are identified in a series of attribute tables—the "information" part of a GIS. Spatial relationships, such as whether features intersect or whether they are adjacent, are the key to all GIS-based analysis.
|| ↑ Top ||
Data integration
A GIS makes it possible to link, or integrate, information that is difficult to associate through any other means. Thus, a GIS can use combinations of mapped variables to build and analyze new variables (fig. 9).
For example, using GIS technology, it is possible to combine agricultural records with hydrography data to determine which streams will carry certain levels of fertilizer runoff. Agricultural records can indicate how much pesticide has been applied to a parcel of land. By locating these parcels and intersecting them with streams, the GIS can be used to predict the amount of nutrient runoff in each stream. Then as streams converge, the total loads can be calculated downstream where the stream enters a lake.
|| ↑ Top ||
Projection and registration
A property ownership map might be at a different scale than a soils map. Map information in a GIS must be manipulated so that it registers, or fits, with information gathered from other maps. Before the digital data can be analyzed, they may have to undergo other manipulations—projection conversions, for example—that integrate them into a GIS.
Projection is a fundamental component of mapmaking. A projection is a mathematical means of transferring information from the Earth's three-dimensional, curved surface to a two-dimensional medium—paper or a computer screen. Different projections are used for different types of maps because each projection is particularly appropriate for certain uses. For example, a projection that accurately represents the shapes of the continents will distort their relative sizes.
Since much of the information in a GIS comes from existing maps, a GIS uses the processing power of the computer to transform digital information, gathered from sources with different projections, to a common projection (figs. 10a and b).
|
0 komentar:
Posting Komentar